Faculty of Engineering

ENGG1320-IMSE-Modo_Robo @ 5th Inno Show

Ours project is a soccer robot that is designed to look like an actual soccer ball. It has a ball-like shell, thus having an attractive look, while also being sturdy. It also has a pair of arms which is ide and slightly curved. This way the robot can maintain control of the ball effectively, while also allowing shooting (which requires certain control techniques). Its main control mechanism is designed to consist of only 2 joysticks, thus allowing easy control. Its movement speed is also determined by the magnitude of the joysticks. This ensures the robot can be moved flexibly.

PERfECT Wearables: A Coin-sized Platform for Health Innovation @ 5th Inno Show

Tiny, soft, imperceptible wearable biosensors that can continuously monitor our body condition have the potential to revolutionize healthcare technologies. They are in urgent demand to realize the goal of personalized healthcare and digital medicine. In this project, we developed a series of next-generation wearable biosensors for advanced healthcare. These futuristic devices are developed based on the PERfECT chip, which is the world’s smallest wearable biosensing platform developed in Innovation Wing. In the next several years, we expect these wearables biosensors will help PERfECT-enabled spin-off biotech companies to revolutionize our current technologies in managing cardiovascular diseases, mental health, and diabetes.

Scheduling Application

HKU Portal provides a course enrollment system but a lot of sections are provided and each section may contains different time slots. So it is not friendly to plan the schedule and it will be time consuming to test the which section will not causing time clash. Smart Schedule is an app that gives some useful suggestions for scheduling and provides a better user interface to edit timetable planning.

RoboMaster @ 5th Inno Show

Students will design and develop different types of robots that can launch projectiles in a complex battlefield. The robots are required to cooperate with each other and work together to attack the base of the opponent and at the same time protect their own base. Students will form a team to participate in the RoboMaster 2022 Robotics Competition and compete against other teams from all over the world using their self-build robots.

HKU UAS@5th Inno Show

HKU UAS is an Unmanned Aerial Systems team dedicated to forming a community of Unmanned Aerial Vehicles (UAV) enthusiasts and its associated systems, consisting of two technical teams: Mechanical Team and Computer Science Team. The team aims to join the AUVSI SUAS international competition, situated in Maryland, U.S.A. The competition requires the team to design a UAS capable of Autonomous Flight, Obstacle Avoidance, Object Detection, Classification and Localization, Mapping, Airdrop and Package Delivery via an Unmanned Ground Vehicle.

Design, Build & Fly @ 5th Inno Show

Design, Build & Fly (DBF) is a regular capstone design project under the Department of Mechanical Engineering at the University of Hong Kong. In the past five years, DBF teams from HKU have participated in various competitions around the world. For this academic year, DBF Team will once again participate in the American Institute of Aeronautics (AIAA) Design/Build/Fly Competition and the British Model Flying Association 2022 University and Schools Flight Challenges. Teams are expected to go through the process of designing, manufacturing prototypes, testing, redesigning and competing with other international teams over the globe.

A solar power system for producing useful fuels and chemicals from biomass waste

To design an innovative solar heating system with a solar tracking system and solar power supply system which aims to convert biomass waste materials to char products, namely charcoal, biochar and activated carbon through pyrolysis with the use of renewable energy. The fabricated solar heating system is 100% driven by solar energy and is a zero-carbon emission and conversion system. It has a short payback period of less than 7 years and it is generally economically viable, with a minimum requirement of land. It is hoped that the project will contribute to both environment and optimisation of power storage to discover cost-effective designs in the future.

Introducing SURGIVIEW: A Fast and Accurate Augmented Reality(AR) Application Supporting End-to-End Clinical Operations

SURGIVIEW is a holographic augmented reality (AR) application that can assist end-to-end surgical support for minimally invasive surgeries (MIS). This app can overlay holographic anatomic structure on physical tissue, so surgeons can see “through” patient’s body during operation. Incorporating a novel triplet-calibration algorithm, the app can achieve accurate overlay (re-projection error < 5mm) faster than most of the current strategies for less than 8 seconds. Aiming for use among medical community including surgeons, patients and medical residents, the app has multiple functions to support from pre-operative planning, intra-operative navigation to post-operative demonstration. With SURGIVIEW, we hope to develop a more intuitive and interactive future of clinical and surgery practices.

Dance with idols

Dance with idols is a music game. With only one smart phone or PC with one webcam, you can follow the tutorial and dance with virtual idols. The camera captures your gesture and the computer calculates the similarity between you and the model precisely. At the end of each song, you will see your final total score and grade. It lowers the requirement of devices but improves the dancing experience along with virtual idols.

Drones for the purpose of Long Distance Wireless Communication based on LoRa

The main purpose of this project is to develop a cost-effective surveillance and rescue drone with a longer flying time and long-range data transmission through a careful selection of industrial quality low-cost components. Our target customers are disaster relief teams which can use the drone for assistance in rescue operations through surveillance and human detection.
The drone has the following functionality:
i) Human Detection Capabilities through PIR Sensing
ii) LoRa communication channel for transmitting human detection signals back to rescue teams
iii) Auto-Level Feature to ensure stability in turbulent weather conditions
A first prototype has been developed with all the necessary functionality and is 40% cheaper than available solutions.
Our goals for the next prototype are: i) Reduce weight to improve performance ii) Design a custom PCB to make design more compact.