kit

Performance of Sustainable Cement for Marine Construction

Chloride attack of concrete in particular for marine structures is a serious global issue where it can lead to severe deterioration of the concrete, drastic reduction in strength of structures and safety concerns. The world is urging for a remedy to this situation. A green alternative to Ordinary Portland Cement (OPC), Alkaline-activated Slag (AAS), is found to be having 70%-150% higher chloride binding capacity than that of OPC, making it a potential antidote to this issue. This project aimed to analyse the chloride resistance of AAS in the marine environment, to provide better predict the service life of marine structures and to find ways to enhance the durability of concrete in aggressive conditions. With AAS, let us ‘cement’ a sustainable future.

Preparing a Novel Pressure Driven Membrane with High Performance for Seawater Desalination

Seawater desalination offers the vast potential of producing unlimited clean water. Membrane-based desalination technologies can be used to produce alternation water source. Reverse osmosis (RO) is regarded as a reliable technique for seawater desalination. Most RO membranes have a thin-film composite (TFC) structure, and the performance of the membrane is predominantly determined by the physiochemical properties of the polyamide (PA) layer. The performance and the formation mechanism of the PA layer have been intensively studied in recent years. This project aims at fabricating the TFC membrane using a support-free IP reaction, and to explore the formation mechanisms of the PA layer in the SFIP reaction system. Results show that the performance of the fabricated RO membranes is satisfactory.

Smart Product Development – AGV Robot

We created an Automated Guided Vehicle (AGV), in the shape of a Hong Kong Tram. This AGV is able to autonomously follow, turn, and pause at a path by only given basic information about its environment. To complete this project, our team has to combine our skills in CAD modelling, 3D Printing, Advanced Machining, Laser Cutting, and Programming. Our objective in this project is to create a more fun and approachable learning tool for primary or secondary students, to learn more about the world of robotics, logistics, and automation.

Electrospun reusable nanofibrous membrane filters for environmental applications

Our team developed highly efficient nanofibrous membrane filters for different environmental applications, including water and air purification. We utilized electrospinning as a platform to fabricate functional nanofibrous membrane filters for pollutant removal, including heavy metals, particulate matters, etc. Thanks to the high porosity of nanofibers, the filtration consumes almost zero electricity without sacrificing efficiency. Moreover, after saturation of contaminants, the filters can be easily regenerated by simple washing with daily accessible agents like citric acid and ethanol. The project aims at offering a more sustainable and healthier lifestyle for modern society. Thus, commercialization opportunities are highly welcome.

Automatic Chair Parking System

Automatic Chair Parking System aims to provide a smart solution in classroom and other similar environment by helping to move and arrange chairs, while reducing the risk of occupational injuries and potential dangers related to the repetitive works. This can also reduce the reliance on labour force and ultimately improve the efficiency. The system therefore is designed to autonomously transport chairs to the designated parking area with minimal human control.